On the Multicolor Ramsey Number for 3-Paths of Length Three

نویسندگان

  • Tomasz Luczak
  • Joanna Polcyn
چکیده

We show that if we color the hyperedges of the complete 3-uniform hypergraph on 2n + √ 18n + 1 + 2 vertices with n colors, then one of the color classes contains a loose path of length three. Let P denote the 3-uniform path of length three by which we mean the only connected 3-uniform hypergraph on seven vertices with the degree sequence (2, 2, 1, 1, 1, 1, 1). By R(P ;n) we denote the multicolored Ramsey number for P defined as the smallest number N such that each coloring of the hyperedges of the complete 3-uniform hypergraph K (3) N with n colors leads to a monochromatic copy of P . It is easy to check that R(P ;n) > n+6 (see [2, 5]), and it is believed that in fact equality holds, i.e.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicolor Ramsey numbers for some paths and cycles

We give the multicolor Ramsey number for some graphs with a path or a cycle in the given sequence, generalizing a results of Faudree and Schelp [4], and Dzido, Kubale and Piwakowski [2, 3].

متن کامل

Multicolor Ramsey Numbers for Paths and Cycles

For given graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some Gi, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ 8 is even and Cm is the cycle on m...

متن کامل

On some Multicolor Ramsey Properties of Random Graphs

The size-Ramsey number R̂(F ) of a graph F is the smallest integer m such that there exists a graph G on m edges with the property that any colouring of the edges of G with two colours yields a monochromatic copy of F . In this paper, first we focus on the size-Ramsey number of a path Pn on n vertices. In particular, we show that 5n/2 − 15/2 ≤ R̂(Pn) ≤ 74n for n sufficiently large. (The upper bou...

متن کامل

New lower bounds for two multicolor classical Ramsey numbers

We present an algorithm to find lower bounds for multicolor classical Ramsey numbers by using 2-normalized cyclic graphs of prime order, and use it to obtain new lower bounds for two multicolor classical Ramsey numbers: R(3, 3, 12) ≥ 182, R(3, 3, 13) ≥ 212.

متن کامل

On Some Ramsey and Turan-Type Numbers for Paths and Cycles

For given graphs G1, G2, ..., Gk, where k ≥ 2, the multicolor Ramsey number R(G1, G2, ..., Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, there is always a monochromatic copy of Gi colored with i, for some 1 ≤ i ≤ k. Let Pk (resp. Ck) be the path (resp. cycle) on k vertices. In the paper we show that R(P3, Ck, Ck) = R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017